Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation.
نویسندگان
چکیده
OBJECTIVE Myocardin is a cardiac- and smooth muscle-specific transcription co-factor that potently activates the expression of downstream target genes. Previously, we demonstrated that overexpression of myocardin inhibited the proliferation of smooth muscle cells (SMCs). Recently, myocardin was reported to induce the expression of microRNA-1 (miR-1) in cardiomyocytes. In this study, we investigated whether myocardin induces miR-1 expression to mediate its inhibitory effects on SMC proliferation. METHODS AND RESULTS Using tetracycline-regulated expression (T-REx) inducible system expressing myocardin in human vascular SMCs, we found that overexpression of myocardin resulted in significant induction of miR-1 expression and inhibition of SMC proliferation, which was reversed by miR-1 inhibitors. Consistently, introduction of miR-1 into SMCs inhibited their proliferation. We isolated spindle-shaped and epithelioid human SMCs and demonstrated that spindle-shaped SMCs were more differentiated and less proliferative. Correspondingly, spindle-shaped SMCs had significantly higher expression levels of both myocardin and miR-1 than epithelioid SMCs. We identified Pim-1, a serine/threonine kinase, as a target gene for miR-1 in SMCs. Western blot and luciferase reporter assays further confirmed that miR-1 targeted Pim-1 directly. Furthermore, neointimal lesions of mouse carotid arteries displayed downregulation of myocardin and miR-1 with upregulation of Pim-1. CONCLUSIONS Our data demonstrate that miR-1 participates in myocardin-dependent of SMC proliferation inhibition.
منابع مشابه
Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملTMEM16A and myocardin form a positive feedback loop that is disrupted by KLF5 during Ang II-induced vascular remodeling.
The TMEM16A protein is an important component of Ca(2+)-dependent Cl(-) channels (CaCCs) in vascular smooth muscle cells. A recent study showed that TMEM16A inhibits angiotensin II-induced proliferation in rat basilar smooth muscle cells. However, whether and how TMEM16A is involved in vascular remodeling characterized by vascular smooth muscle cell proliferation remains largely unclear. In thi...
متن کاملRepression of versican expression by microRNA-143.
Smooth muscle cells (SMCs) retain remarkable plasticity to undergo phenotypic modulation in which the expression of smooth muscle markers is markedly attenuated while conversely expression of extracellular matrix (ECM) is dramatically up-regulated. Myocardin is perhaps the most potent transcription factor for stimulating expression of smooth muscle-specific genes; little is known, however, abou...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملRequirement of miR-9-dependent regulation of Myocd in PASMCs phenotypic modulation and proliferation induced by hepatopulmonary syndrome rat serum
Hepatopulmonary syndrome (HPS) is characterized by a triad of severe liver disease, intrapulmonary vascular dilation and hypoxaemia. Pulmonary vascular remodelling (PVR) is a key feature of HPS pathology. Our previous studies have established the role of the pulmonary artery smooth muscle cell (PASMC) phenotypic modulation and proliferation in HPS-associated PVR. Myocardin, a robust transcripti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2011